Five-Year Academic Strategic Plan 2016-2021 - DRAFT

VISION/VALUES/BELIEFS

‘Through leading edge research and education, we integrate chemistry, biology and engineering to drive solutions to global challenges in energy, the environment and health’

Values
• Ethics, values and integrity of students
• Education, student future well-being in vocation
• Collegiality, collaboration & community
• Benefit to society, sustainability, meaningful problems, global impact
• Adaptive to rapidly changing world / global issues
• Creativity, imagination, open-mindedness
• Technical excellence & international reputation

Beliefs
• Worried on unsustainable track
• We will be among the top chem eng depts, and will be recognized as such
• Type of offering will attract corresponding type of students
• Rate of change in world is accelerating
• Strong link between “big” global issues and sustainability in chemical engineering discipline

ENVIRONMENT

Opportunities
• Shifting focus of government funding for industrial research
• Declining research group in companies and government
• Large-scale funding initiatives in Canada and internationally (Genome Canada, IC-IMPACTS, Gates)
• Dean’s Strategic Fund
• Non-traditional funding sources: industrial contributions, philanthropy
• Sustainability of planet (climate change, pollution, social unrest, water distribution and scarcity)
• Students adapt to changing workplace
• Large urban metropolitan environment
• Scale of U of T
• Centre for Innovation and Engineering Entrepreneurship
• Leveraging international reputation for collaborations
• Leveraging intl’ reputation for student recr.
• Online learning tools and resources
• E-textbooks/Cloud/open access for R&D data
• Changing accreditation approach

Threats
• Government Funding model (bums in seats)
• Declining/flat government funding (research + edu)
• Declining international student funding
• U of T Funding model (passed down)
• Unstable & unpredictable research funding
• Funding (MTCU) based on headcount with base costs
• Faculty workload – fragmented, too many different tasks
• Efficiency of teaching resource considering attendance
• Limit resources for transformation to “work on the floor”

VISION/VALUES/BELIEFS

Values
• Ethics, values and integrity of students
• Education, student future well-being in vocation
• Collegiality, collaboration & community
• Benefit to society, sustainability, meaningful problems, global impact
• Adaptive to rapidly changing world / global issues
• Creativity, imagination, open-mindedness
• Technical excellence & international reputation

Beliefs
• Worried on unsustainable track
• We will be among the top chem eng depts, and will be recognized as such
• Type of offering will attract corresponding type of students
• Rate of change in world is accelerating
• Strong link between “big” global issues and sustainability in chemical engineering discipline

ORGANIZATION

Structure
• 1 Chair
• 3 Associate Chair – UG/Grad/Research
• 17 Admin Staff – optimize with transformation
• Leadership Team
• 13 Committees & 7 Task Forces
• Staff have very defined roles
• 6 Research Clusters for collaboration
• 5 Institutes: (3 with Exec Dir – Business Dev)
• BioZone, OCCAM, SOCAAR, IWI, P&PC
• Central with low team integration
• Low authority / high autonomy for prof
• Self-organizing system with tenure security

Style
• Faculty champions drive key initiatives
• Flexible, adaptable community
• Collegial with low team integration
• E-learning technology very limited

Size (Capacity)
• First year intake ~90 domestic, 40 int’l
• Second year intake ~150
• Graduate students 240, ~8 students/FTE
• Focus on TCC improvements in grad

Staffing
• 34 Professors
• 19 Adjunct Professors
• Not anticipating sign change in Faculty size (+10%?)

External Relations With Industry
• Mediated through institutes & centres
• $1M industrial funding
• 46 invention disclosures; 7 licenses
• ~70 Company relationships
• 20 Companies Formed since 1970=12yr

Transformational Resources (New)
• Support for faculty champions
• Educational Design Advisor (EDA)
• Faculty of Education Masters/PhD Students
• Board of Advisors focus on business development
• Develop Exec. Dir. role to drive business growth with industry
• Teaching technology & big data resources
Five-Year Academic Strategic Plan – Key Initiatives, 2016-2021 (DRAFT)

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Rationale</th>
<th>Multi Year Targets</th>
<th>Tactics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initiate large multi-researcher / multi-disciplinary (MR/MD) collaborative programs around our vision</td>
<td>By 2020 – 3 new MR/MD programs are running

A. 2016 Identify potential target issues
B. 2017 Establish funding and approvals
C. 2018 First Multi Researcher / Multi Disc program is formally launched
D. 2019 Program 2
E. 2020 Program 3</td>
<td>i. Broad solicitation of problem identification candidates
ii. Kickstarter initiatives + Dean’s Strategic Fund seed projects
iii. Start more seeds with risk that some will fail
iv. Engage industrial partners
v. External advisory board
vi. Hire 3 new faculty aligned with the plan
vii. Identify key funding sources attached to big themes</td>
</tr>
<tr>
<td>2</td>
<td>Create a modern chemical engineering curriculum aligned with our vision</td>
<td>By 2020 reduce in-classroom instructional time significantly (~30%), complementing with problem-based and experiential learning in ways that improve learning outcomes

A. 2016 Foundation with grad students
B. 2016 Lab Task Force integrating Labs/curriculum
C. 2016 E-modules for Engineering Economics
D. 2017 Enhanced professional skills program & international program
E. 2018 Graduate hatchery
F. 2019 – 30% reduction in classroom time
G. 2020 – 50% achieved</td>
<td>i. Benchmark (e.g., MIT & Stanford & others)
ii. Add Educational Design Advisor + Fac of Ed help
iii. Define roadmap to 50% in detail
iv. Unit operations renewal – Integrated Chemical Engineering
v. Seed pilot designs in selected safe places in the existing curriculum
vi. New mandatory course for grads in Graduate Research Methods
vii. Develop MOOC pilot with Dean’s Strategic Fund
viii. Hire the faculty who can deliver new program</td>
</tr>
<tr>
<td>3</td>
<td>Elevate teaching excellence, effectiveness and impact</td>
<td>By 2020 the student-centred, diverse-style learning environment is a distinguishing trait of the whole program

A. 2016 Teaching triads kick-off
B. 2017 Budget includes new resources
C. 2018 Measurable impact expected in student response
D. 2020 No doubt in transformation on feedback</td>
<td>i. Teaching stream appointment (s)
ii. Teaching effectiveness committee
iii. Initiate teaching triads for mutual support
iv. Coordinate with new curriculum above
v. One faculty with strong teaching improvement focus</td>
</tr>
<tr>
<td>4</td>
<td>Catalyze the synergy of our external networks with our internal capability for societal and economic impact</td>
<td>By 2020 increase R&D funding to $30M

A. 2016 Lab Task Force integrating Labs/curriculum
B. 2016 Launch Graduway to engage alumni
C. 2017 Research theme alignment plan
D. 2020 – 1,000 engaged alumni & 100 engaged industrial partners</td>
<td>i. Benchmark to ID best practice
ii. Strong design support from Board of Advisors
iii. Priority focus areas determined with initiative 1
iv. Catalogue and critique current situation – external links
v. Institute Exec Dir help design effective approaches
vi. Identify climate change related big themes & funding
vii. Enhance tracking and engagement with alumni and customers</td>
</tr>
<tr>
<td>5</td>
<td>Reorganize and streamline administration and support systems efficiency to drive overall space and organizational effectiveness</td>
<td>By 2020 we have realized the above bold plans because we purposefully allocated the resource to do it!

A. 2016 Organizational design and funding freed up
B. 2017 4-year facility plan reflecting above
C. 2017 Resources in place and actively working
D. 2017 New space concept is in place
E. 2018 TTC model saves resources</td>
<td>i. Streamline administrative work and allocate to new transformation resources
ii. Shared services model across the Dept/Faculty
iii. Space management committee/policy
iv. Re-conceptualize learning space design per above
v. Lose the walls and see industry partners and the whole university as learning space</td>
</tr>
</tbody>
</table>